Page 114 - Modelisation du devenir des pesticides...
P. 114

Chapitre 3 Evaluation du modèle STICS version pesticide sur différents sites
               expérimentaux
                 66. Tiktak A, van der Linden AMA, van der Pas LJT. Application of the pes-
                     ticide transport assessment model to a field study in a humic sandy soil in
                     Vredepeel, The Netherlands. Pestic. Sci.52 :321–36 (1998).
                 67. Aden K, Diekkrüger B. Modeling pesticide dynamics of four different sites
                     using the model system SIMULAT. Agric. Water Manag. 44 :337–355 (2000).
                 68. Jarvis NJ, Brown CD, Granitza E. Sources of error in model predictions of
                     pesticide leaching : a case study using the MACRO model. Agric. Water
                     Manag. 44 :247–262 (2000).
                 69. Tiktak A. Application of pesticide leaching models to the Vredepeel dataset :
                     II Pesticide fate. Agric. Water Manag.44 :119–134 (2000).
                 70. Loague K, Green RE. Statistical and graphical methods for evaluating solute
                     transport models : Overview and application. J. Contam. Hydrol. 7 :51–73
                     (1991).
                 71. Vanclooster M, Boesten J. Application of pesticide simulation models to
                     the Vredepeel dataset : I. water, solute and heat transport. Agric. Water
                     Manag.44 :105–117 (2000).
                 72. Eurostat : Crops products - annual data . European Council ; 2013.

                 73. Serrano L, Filella I, Penuelas J. Remote sensing of biomass and yield of
                     winter wheat under different nitrogen supplies. Crop Sci.40 :723–31(2000).

                 74. Clapp RB, Hornberger GM. Empirical equations for some soil hydraulic pro-
                     perties. Water Resour. Res.14 :601–604 (1978).
                 75. Wösten JHM, Finke PA, Jansen MJW. Comparison of class and continuous
                     pedotransfer functions to generate soil hydraulic characteristics. Geoderma.
                     66 :227–237 (1995).
                 76. Trevisan M, Errera G, Goerlitz G, Remy B, Sweeney P. Modelling ethopro-
                     phos and bentazone fate in a sandy humic soil with primary pesticide fate
                     model PRZM-2. Agric. Water Manag.44 :317–35 (2000).

                 77. Schierholz I, Schäfer D, Kolle O. The Weiherbach data set : An experi-
                     mental data set for pesticide model testing on the field scale. Agric. Water
                     Manag.44 :43–61 (2000).

                 78. Renaud F., Brown C., Fryer C., Walker A. A lysimeter experiment to inves-
                     tigate temporal changes in the availability of pesticide residues for leaching.
                     Environ. Pollut. 131 :81–91 (2004).

                 79. Van Beinum W, Beulke S, Fryer C, Brown C. Lysimeter Experiment To
                     Investigate the Potential Influence of Diffusion-Limited Sorption on Pesticide
                     Availability for Leaching. J. Agric. Food Chem. 54 :9152–9159 (2006).







               102
   109   110   111   112   113   114   115   116   117   118   119